
Ontology Engineering

Dr Eleni Tsalapati

Marie Curie Fellow

28/11/2022

Ontology Engineering

▪ Ontology engineering is knowledge engineering.

▪ Developing ontology engineering techniques, methodologies and
tool support has been a core research problem.

▪ There are various interesting ontology engineering
methodologies (some accompanied by relevant tools):

▪ Methontology (Gomez-Perez and colleagues, 1997)

▪ Uschold and King (2005)

▪ Gruninger and Fox (2005)

▪ …

▪ SAMOD (2016)

▪ …

When to use OWL?
3

▪ Consider carefully the following features of OWL:

▪ Object-centered (based on individuals with unique identity, classes and
properties).

▪ Terminological: Supports the building of complex terms (noun phrases) in the
form of classes. Individuals are asserted to belong to these classes. There is no
way to express arbitrary quantifications or disjunctions (as in FOL).

▪ Deductive: not just a passive repository of assertions.

▪ Incremental: partial, incomplete descriptions of individuals are acceptable and
can be refined later.

▪ Based on self-organization of concepts in a subsumption hierarchy.

▪ Based on the open world assumption.

▪Main elements of an ontology:
▪ Entities

▪ Classes

▪ Individuals (not always)

▪ Properties

▪ Property restrictions (OWL)

▪ Class expressions (OWL)

▪ General axioms/rules (OWL/SWRL)

▪ Annotations

Key elements

4

Ontology Development Pipeline

5

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms for
each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Keep notes

Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

6

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms for
each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Keep notes

Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

7

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms for
each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Keep notes

Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

8

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms for
each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Keep notes

Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

9

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms for
each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Keep notes

Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

10

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms
(primitive/defined) for

each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Keep notes

Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

11

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms
(primitive/defined) for

each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Use annotation

axioms
Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

12

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms
(primitive/defined) for

each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Use annotation

axioms
Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

13

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms
(primitive/defined) for

each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Use annotation

axioms
Populate

Evaluate against
goals

Consistency checking

Ontology Development Pipeline

14

Define the goal
Collect competency

questions

Check if the goal can
be satisfied.

Consider OWA, CWA

Collect the terms of
the subdomain +

Definitions
(top-down/ bottom-

up/middle-out)

Identify existing
relevant ontologies

(if any)

Organise terms
(primitive/defined) for

each subdomain,
make diagrams

Split the domain in
subdomains

Implementation
Use annotation

axioms
Populate

Evaluate against
goals

Consistency checking

▪Consider the following terms:

▪Wine

▪Red Wine

▪Red Bordeaux Wine

Class or Individual?

15

▪Can the class be instantiated?

▪Wine (class)

▪Red Wine (class)

▪Red Bordeaux Wine (class)

▪Chateau Lafleur (class or individual?)

Class or Individual?

16

▪ It depends on the goal of the
ontology:

▪ If the goal is to match wines
with food:

▪ Then an individual

Class or Individual?

17

▪ It depends on the goal of the
ontology:

▪ If the goal is to learn the
weather conditions at the time
of harvesting:

▪ Then class

▪ With what individuals?

▪ 1993 Chateau Lafleur

Class or Individual?

18

▪ It depends on the goal of the
ontology:

▪ If the goal is to cover the
inventory of a wine cellar

▪ Then class “1993 Chateau Lafleur”
is a class

▪ The individuals are the specific
bottles in the cellar according to
their ID numbers

Class or Individual?

19

:CLafleur

:CLafleur_2019
:CLafleur_2018

:CLafleur_2017

:meat

“2017”^^xsd:integer “100121”^^
xsd:integer

:matchesWith

:year

:ID

▪ In OWL (as in DLs), we can distinguish two kinds of
classes:
▪ Defined classes

▪ Primitive classes

Classes

20

▪ A defined class is like an “if and only if” statement in logic.

(EquivalentClasses(CE1 ... CEn))

▪ Example: A driver can be defined to be exactly “a person who drives a
vehicle”.

▪ With a defined class, we give necessary and sufficient conditions for
membership in a class.

▪ Thus a defined class allows deduction in two directions. For example:
▪ If someone is a driver, then he/she is a person and he/she drives a vehicle.

▪ If someone is a person and he/she drives a vehicle, then he/she is a driver.

Defined Classes

21

▪ A primitive class includes only necessary (but not sufficient
conditions) for membership.

(SubClassOf(CE1 CE2))

▪ Example: It is hard to define a dog (or any other natural kind).
However, we might want to say:
▪ Among other things, a dog is something that eats bones.

▪ In contrast to defined classes, primitive classes support
deductions in only one direction. For example:
▪ If something is a dog, then we can infer that it eats bones.

Primitive Classes

22

▪Defined
▪ The complete definition of the class is known and relevant.

▪ When one wants the system to determine class membership
(well, if we do not want to do this, why use OWL?).

▪Primitive
▪ They are usually found near the top of a generalization

hierarchy while defined classes typically appear as we move
further down by specializing general classes with various
restrictions.

Determining whether a class is defined or primitive

23

▪ It is important to distinguish between a class’ true
definition and any incidental properties.

▪Examples:

▪Red Bordeaux wines are always dry.

▪Red Bordeaux wines are red and from Bordeaux

▪But the property of being dry is certainly not a part of
the definition of the class RedBordeauxWine (only the
color and the region define a wine to be a Red
Bordeaux).

Definitional vs. Incidental Properties

24

▪ In OWL, incidental properties are asserted using extra
subclass axioms (in addition to the axioms that define
the class).

Definitional vs. Incidental Properties (cont’d)

25

▪Decide for each class whether a restriction should be
taken as:

▪ Part of the meaning of a class (and thus participate in
classification) (definitional property)

▪ Bordeaux wine is made in Bordeaux

▪ Derived property to be inferred once class membership is
known (incidental property)

▪ Bordeaux wine is made of grapes

Defining Classes

26

▪Usually:

▪ Nouns as classes

▪ Verbs as properties

▪Example:

▪A Bordeaux wine is any wine produced in the
Bordeaux region of France

▪Exercise:How would you model this?

Classes or properties?

27

▪Usually:

▪ Nouns as classes

▪ Verbs as properties

▪Example:

▪A Bordeaux wine is any wine produced in the
Bordeaux (is) region of France

Classes or properties?

28

▪Usually:

▪ Nouns as classes

▪ Verbs as properties

▪What about:

▪ Cabernet Franc is a grape

▪ Chateau Lafleur has grape Cabernet Franc

▪Class or property?

Classes or properties?

29

▪Can the description stand on its own without implying
an unmentioned object related to the object in
question?

▪ If yes: class

▪ Otherwise: property.

▪ Cabernet Franc is a grape

▪ Chateau Lafleur has grape Cabernet Franc

Classes or properties?

30

▪Can the description stand on its own without implying
an unmentioned object related to the object in
question?

▪ If yes: class

▪ Otherwise: property.

▪ Cabernet Franc is a grape

▪ Chateau Lafleur has grape Cabernet Franc

▪ If the term should play both roles then we can use the
prefix “has”

Classes or properties?

31

Things to Remember (from Ontology 101 tutorial)

32

▪ There is never a single correct way to model a
domain— there are always viable alternatives.

▪ The best solution almost always depends on the
application that you have in mind and the extensions
that you anticipate.

▪Ontology development is necessarily an iterative
process.

33

Example: Purpose & scope of the animals ontology

• To provide an ontology for an index of a children’s book of

animals including

– Where they live

– What they eat

• Carnivores, herbivores and omnivores

– How dangerous they are

– How big they are

– A bit of basic anatomy

• numbers of legs, wings, toes, etc.

34

Organise the concepts

Example: Animals & Plants

• Dog

• Cat

• Cow

• Person

• Tree

• Grass

• Herbivore

• Male

• Female

• Healthy

• Pet

• Domestic Animal

• Farm animal

• Draft animal

• Food animal

• Fish

• Carp

• Goldfish

• Carnivore

• Plant

• Animal

• Fur

• Child

• Parent

• Mother

• Father

35

Organise the concepts

Example: Animals & Plants

• Dog

• Cat

• Cow

• Person

• Tree

• Grass

• Herbivore

• Male

• Female

• Healthy

• Pet

• Domestic Animal

• Farm animal

• Draft animal

• Food animal

• Fish

• Carp

• Goldfish

• Carnivore

• Plant

• Animal

• Fur

• Child

• Parent

• Mother

• Father

36

Organise the concepts

Example: Animals & Plants

• Dog

• Cat

• Cow

• Person

• Tree

• Grass

• Herbivore

• Male

• Female

• Healthy

• Pet

• Domestic Animal

• Farm animal

• Draft animal

• Food animal

• Fish

• Carp

• Goldfish

• Carnivore

• Plant

• Animal

• Fur

• Child

• Parent

• Mother

• Father

37

Extend the concepts

“Laddering”

• Take a group of things and ask what they have in common

– Then what other ‘siblings’ there might be

• e.g.

– Plant, Animal → Living Thing

• Might add Bacteria and Fungi but not now

– Cat, Dog, Cow, Person → Mammal

• Others might be Goat, Sheep, Horse, Rabbit,…

– Cow, Goat, Sheep, Horse → Hoofed animal (“Ungulate”)

• What others are there? Do they divide amongst themselves?

– Wild, Domestic → Domestication

• What other states – “Feral” (domestic returned to wild)

Extend the concepts

“Laddering”

• Why do we do this?

• This way we can define the properties of the most generic classes

and their subclasses will inherit these properties

38

39

Choose some main axes

• Add abstractions where needed

– e.g. “Living thing”

• Identify relations

– e.g. “eats”, “owns”, “parent of”

• Identify definable things

– e.g. “child”, “parent”, “Mother”, “Father”

• Things where you can say clearly what it means

– Try to define a dog precisely – very difficult

» A “natural kind”

• Make names explicit (start naming things

properly)

40

Naming conventions

• Choose a naming convention and stick to it!

• Issues:
– Capitalization and delimiters (e.g., WildAnimal vs. Wild-

Animal vs. Wild Animal)

– Singular or plural (e.g., Wine vs. Wines)

– Prefix and suffix conventions (e.g., has-father, father-

of)

– Do not add strings such as “class” or “property” to names of

classes or properties (e.g, WineClass).

– Avoid abbreviations to enhance readability

– If you prefer to use the name of a class (e.g., Animal) in the name

of a direct subclass (e.g., Wild Animal), use it consistently for

all subclasses.

41

Choose some main axes

Add abstractions where needed; identify relations;

Identify definable things, make names explicit

• Living Thing

– Animal

• Mammal

– Cat

– Dog

– Cow

– Person

• Fish

– Carp

– Goldfish

– Plant

• Tree

• Grass

• Fruit

• Modifiers*
– domestic

• pet

• Farmed

– Draft

– Food

– Wild

– Health

• healthy

• sick

– Sex

• Male

• Female

– Age

• Adult

• Child

◼ Definable

◼ Carnivore

◼ Herbivore

◼ Child

◼ Parent

◼ Mother

◼ Father

◼ Food Animal

◼ Draft Animal

◼ Relations

◼ eats

◼ owns

◼ parent-of

◼ …

42

Self_standing_entities

• Things that can exist on their own

– People, animals, houses, actions, processes, …

• Roughly nouns

• Modifiers

– Things that modify (“inhere”) in other things (e.g., domestic

animal)

• Roughly adjectives and adverbs

43

Identify the domain and range constraints for

properties

• Animal eats Living_thing

– eats domain: Animal;

range: Living_thing

• Person owns Living_thing except person

– owns domain: Person

range: Living_thing & not Person

• Living_thing parent_of Living_thing

– parent_of: domain: Animal

range: Animal

44

If anything is used in a special way,

add a text comment

• Animal eats Living_thing

– eats domain: Animal;

range: Living_thing

— ignore difference between

parts of living things

and living things

also derived from living

things

45

For definable things

• Paraphrase and formalise the definitions in terms of the primitives, relations and other
definables.

• Note any assumptions to be represented elsewhere.

– Add as comments when implementing

• “A ‘Parent’ is an animal that is the parent of some other animal” (Ignore plants for
now)
– Parent isEquivalentTo Animal and parent_of some Animal

• “A ‘Herbivore’ is an animal that eats only plants”
- Herbivore isEquivalentTo Animal and eats only Plant

• “An ‘omnivore’ is an animal that eats both plants and animals”
– Omnivore isEquivalentTo Animal and eats some Animal and eats some Plant

46

Which properties can be filled in

at the class level now?

• What can we say about all members of a class?

– eats

• All cows eat some plants

• All cats eat some animals

• All pigs eat some animals &

eat some plants

47

Check with reasoner

• Cows should be Herbivores

– Are they? why not?

• What have we said?

– Cows are animals and, amongst other things,

eat some grass and

eat some leafy_plants

• What do we need to say:

Closure axiom

– Cows are animals and, amongst other things,

eat some plants and eat only plants

» (See “Vegetarian Pizzas” in OWL tutorial)

48

Normalisation:

From Trees to DAGs

◼ Before classification

◼ A tree

◼ After classification

◼ A DAG

◼ Directed Acyclic Graph

▪ Partonomic vs Subclass relationships

▪ Forgetting to make classes disjoint

▪Open World Assumption

▪Unique Name Assumption

▪Domain and range definitions

Common mistakes in OWL

49

Partonomic vs Subclass relationships

50

:Car

:Car
Window

:Car
Engine

Exercise: Is this correct?

rdfs:SubclassOf

rdfs:SubclassOf

Partonomic vs Subclass relationships

51

:engine

:Car

:Car
Window

:Car
Engine

:window

Car

Car
Window

Car
Engine

▪OWL Classes are assumed to overlap

▪ It is safer to explicitly state that two classes are disjoint

Disjoint Classes

52

:Red Wine
:White Wine

Disjoint Classes

53

:Red Wine

:Red Grape
Variety

:made Of

Domain(:madeOf)=
:RedWine

Disjoint Classes

54

:Red Wine

:Red Grape
Variety

:White Wine

:made Of

:made Of

Domain(:madeOf)=
:RedWine

:Far Niente
Chardonnay

:White Grape
Variety

Disjoint Classes

55

:Red Wine

:Red Grape
Variety

:White Wine

:made Of

Domain(:madeOf)=
:RedWine

If we don’t state that the two classes
are disjoint then we will never notice
the inconsistency and we will only
get wrong results

:made Of

:White Grape
Variety

Disjoint Classes

56

Red Wine

Red Grape
Variety

White Wine

made Of

Domain(madeOf)=
RedWine

If we don’t state that the two classes
are disjoint then we will never notice
the inconsistency and we will only
get wrong results

Need to be careful when defining
domains and ranges
They are not constraints

▪OWA assumes incomplete knowledge by default

▪We assume that our model is going to be reused
and extended

▪Everything can be true unless proven
otherwise

▪OWA is good for designing knowledge in an
extensible way

Open World Assumption

57

▪Does the pancake have
more than 3 ingredients?

▪ Yes

▪Does the pancake have
less than 3 ingredients?

▪No

▪Does the pancake have
more than 5 ingredients?

▪Unknown

Open World Assumption

58

:milk

:egg

:flour

:butter

:pancake

:ingredient

:ingredient

:ingredient

ingredient

▪ I want a lactose-free food

▪DB: ?

▪KB: ?

Exercise: Open World Assumption

59

:pork
meat

:salami

:bread

:lactose

:pancake

:contains
:contains

:contains

▪ I want a lactose-free food

▪DB: salami

▪KB:

▪Unless it is defined that:
▪ pork meat is lactose-free

and

▪ salami contains only pork
meat

Solution

60

:pork
meat

:salami

:bread

:lactose

:pancake

:contains
:contains

:contains

▪OWL does not make the
UNA

▪Because later we may find
that two individuals are
the same

▪We need to define this
explicitly

Unique Name Assumption

61

ex1:Marie
Curie

ex2:Marie
Curie

▪ Various Ontology Development methodologies:
▪ Olszewska JI, Houghtaling M, Gon ̧calves PJS, Fabiano N, Haidegger T, Carbonera JL,

Patterson WR, Ragavan SV, Fiorini SR, Prestes E (2020) Robotic standard development life
cycle in action. J Intell Robotic Syst 98(1):119–131

▪ Peroni S (2016) A simplified agile methodology for ontology development. In: OWL:and
Directions–Reasoner Evaluation, Springer, pp 55–69

▪ Fernandez-Lopez M, Gomez-Perez A, Juristo N (1997) Methontology: From ontological art
towards ontological engineering. In: AAAI 1997

▪ Neches R (1993) Building large knowledge-based systems: Representation and inference in
the CYC project: D.b. lenat and r.v. guha. Artificial Intelligence 61(1):65–7

▪ Helpful Guide:
▪ A Practical Guide to Building OWL Ontologies, Using Protégé 5.5 and Plugins, Edition 3.2, 8

October 2021, Michael DeBellis:
https://drive.google.com/file/d/1A3Y8T6nIfXQ_UQOpCAr_HFSCwpTqELeP/view

▪ Some Theory:
▪ Sebastian Rudolph (2011), Foundations of Description Logics

(https://www.aifb.kit.edu/images/1/19/DL-Intro.pdf)

Resources

62

